\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 1 \& (a)

(b) \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii)

 \&

Energy cannot be created or destroyed; it can only change from one form to another. Don't accept can only be conserved. \\
$E_{p} \rightarrow E_{k}$ (1) can be implied \\
Some energy lost as heat or due to air resistance or due to friction with air - general statement (1) \\
Air molecules gain E_{k} and/or molecules of object gain E_{k} - specific statement (1) \\
$m g h$ calculated correctly $=376.7$ [J] (1) \\
accept g as 9.8 or 9.81 but not 10 \\
$1 / 2 m v^{2}$ calculated correctly $=288$ [J] (1) \\
$E_{p}-E_{k}=88.7$ [J] [ecf from calculated values of E_{p} and/or E_{k}] (1) \\
Correct substitution into $W=F d$ i.e. $88.7($ ecf $)=F \times 4.0$ (1) \\
$F=22[.2 \mathrm{~N}] \quad$ (1) \\
If either E_{p} or E_{k} substituted in for W then award 1 mark only \\
Alternative Solution: \\
Force down slope $=16 \times 9.81 \times \frac{2.4}{4}[F=m g \sin \theta]=94.2[\mathrm{~N}]$ \\
Resultant Force $\Sigma F=16 \times\left(\frac{6^{2}}{8}\right)=72[\mathrm{~N}]$ \\
Mean Frictional Force $=94.2-72=22[.2 \mathrm{~N}]$ \\
Award 1 mark for either force values correct (or both) \\
Award 2 marks for correct solution \\
Question 1 total

 \&

[1] \\
[3] \\
[3] \\
[2]
[9]
\end{tabular} \\

\hline 2 \& (a)
(b)

(c)

(d) \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii)

 \&

Force α extension [provided elastic limit is not exceeded] \\
Accept $F \alpha x$ but x must be defined \\
$4.0[\mathrm{~cm}]$ \\
$F($ from graph $)=0.6[\mathrm{~N}](1)$ \\
Correct application of $a=\frac{\sum F}{m}$ i.e $\frac{0.6}{0.4}=1.5 \mathrm{~m} \mathrm{~s}^{-2}$ (1) UNIT mark (ecf on F) \\
substitution into $1 / 2 F x$ (or area under graph or $\left.1 / 2 k x^{2}\right)(1)$ ecf on F $E_{\text {spring }}=3.6 \times 10^{-2}[\mathrm{~J}] \quad$ (1) \\
$E_{\text {spring }}=0[\mathrm{~J}] \quad$ (1) \\
$\Sigma F=0$ or acceleration $=0$ so extension $=0$ \\
New extension $=1 / 2 \times$ original (1) \\
Force in each spring $=1 / 2 \times$ original \\
or spring constant of system $=2 \times$ original \\
or energy in each spring $=1 / 4 \times$ original (1) \\
Total energy (in both springs) $=1 / 2 \times$ original (1) \\
Accept algebraic equivalents \\
Question 2 total

 \&

$$
[1]
$$ \\

[1] \\
[2] \\
[2] \\
[2] \\
[3] \\
[11]
\end{tabular} \\

\hline
\end{tabular}

Question			Marking details	Marks Available
4	(a) (b)		Electrical energy (or work done) transferred [to other forms passing] between two points (1) per coulomb of charge (1) Definition of 1 V award 1 mark only	[2]
			$V_{\text {supply }}=V_{1}+V_{2}+V_{3}$	[1]
		(ii)	Energy	[1]
	(c)	(i)	$R_{1}+12=\frac{9}{0.5}$ Clear manipulation seen to show $R_{1}=6[\Omega]$ (1)	[2]
		(ii) (I)	$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ to show effective parallel combination $=6 \Omega(1)$ this can be implied V across upper 6Ω resistor shown $=4.5[\mathrm{~V}]($ ecf on parallel combination) (1)	[2]
		(II)	$\begin{aligned} & \text { Total resistance }=12 \Omega \\ & I=\frac{9.0}{12}=0.75[\mathrm{~A}] \quad(1)\left(\text { accept } \frac{4.5}{6}=0.75[\mathrm{~A}]\right) \end{aligned}$	[2]
		(III)	$\begin{align*} & 1.2=\frac{9}{\left(6+R_{\text {parallel }}\right)} \tag{1}\\ & R_{\text {parallel }}=1.5[\Omega] \\ & n \times\left(\frac{1}{12}\right)=\frac{1}{1.5} \quad \text { (1) ecf on } 1.5[\Omega] \\ & n=8 \quad(1) \end{align*}$ Full marks for correct answer based on trial and error Alternative solution: $\begin{aligned} & \frac{9}{1.2}=7.5[\Omega](1) \\ & 7.5-6=1.5[\Omega](1) \\ & \frac{12}{n}=1.5[\Omega](1) \\ & n=8(1) \end{aligned}$	[4]
			Question 4 Total	[14]

Question			Marking details	Marks Available
5	(a)	(i)	Ruler and wire shown and labelled (1) Moving pointer or jockey or crocodile clip indicated (1) Either: Correctly positioned ohmmeter with no power supply; or correctly positioned voltmeter and ammeter with power supply (1) [No labelling required for either method].	[3]
		(ii)	Diagonal line through origin	[1]
		(iii)	CSA from diameter of wire (1) Gradient from graph $=(R / l)$ or (ρ / A) Or stated take a pair of R and l values from the graph (1) $\rho=$ gradient \times CSA or use of $\rho=R A / l$ (1)	[3]
	(b)	(i)	$\begin{equation*} R=\frac{144}{32}=4.5[\Omega] \tag{1} \end{equation*}$ Correct substitution into $R=\rho / / A$ (1) $l=0.375[\mathrm{~m}]$ (1) (ecf on R)	[3]
		(ii)	$I=2.7$ [A] (from V / R or P / V etc) (1) (ecf on $I)$ Correct substitution into $I=n A v e$ (1) $v=1.24 \times 10^{-2}\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ (1) accept $0.01 \mathrm{~m} \mathrm{~s}^{-1}$	[3]
			Question 5 Total	[13]

