PH1

Question		on	Marking details	Marks Available
1	(a)	(i)	Energy cannot be created or destroyed; it can only change from one form to another. Don't accept can only be conserved.	[1]
		(ii)	$E_p \rightarrow E_k$ (1) can be implied Some energy lost as heat or due to air resistance or due to friction with air - general statement (1) Air molecules gain E_k and/or molecules of object gain E_k - specific statement (1)	[3]
	(b)	(i)	mgh calculated correctly = 376.7 [J] (1) accept g as 9.8 or 9.81 but not 10 $\frac{1}{2}mv^2$ calculated correctly = 288 [J] (1) $E_p - E_k = 88.7$ [J] [ecf from calculated values of E_p and/or E_k] (1)	[3]
		(ii)	Correct substitution into $W = Fd$ i.e. 88.7 (ecf) = $F \times 4.0$ (1) $F = 22[.2\mathrm{N}]$ (1) If either E_p or E_k substituted in for W then award 1 mark only Alternative Solution: Force down slope = $16 \times 9.81 \times \frac{2.4}{4}$ [$F = mg\sin\theta$] = $94.2\mathrm{[N]}$ Resultant Force $\Sigma F = 16 \times \left(\frac{6^2}{8}\right) = 72\mathrm{[N]}$ Mean Frictional Force = $94.2 - 72 = 22[.2\mathrm{N}]$ Award 1 mark for either force values correct (or both) Award 2 marks for correct solution	[2]
			Question 1 total	[9]
2	(a)	(i)	Force α extension [provided elastic limit is not exceeded] Accept $F \alpha x$ but x must be defined	[1]
		(ii)	4.0 [cm]	[1]
	(b)		F (from graph) = 0.6 [N] (1) Correct application of $a = \frac{\sum F}{m}$ i.e $\frac{0.6}{0.4} = 1.5 \mathrm{m s^{-2}}$ (1) UNIT mark (ecf on F)	[2]
	(c)	(i)	substitution into $\frac{1}{2} Fx$ (or area under graph or $\frac{1}{2} kx^2$) (1) ecf on F $E_{\text{spring}} = 3.6 \times 10^{-2} [\text{J}] (1)$	[2]
		(ii)	$E_{\text{spring}} = 0 \text{ [J]} (1)$ $\Sigma F = 0 \text{ or acceleration} = 0 \text{ so extension} = 0 (1)$	[2]
	(d)		New extension = $\frac{1}{2} \times \text{original}$ (1) Force in each spring = $\frac{1}{2} \times \text{original}$ or spring constant of system = $2 \times \text{original}$ or energy in each spring = $\frac{1}{4} \times \text{original}$ (1) Total energy (in both springs) = $\frac{1}{2} \times \text{original}$ (1) Accept algebraic equivalents	[3]
			Question 2 total	[11]

Question		ion	Marking details	Marks Available
3	(a)	(i)	J s ⁻¹	
		(ii)	V A ⁻¹	[3×1]
		(iii)	A s	
	(b)	(i)	$t = 2 \times 3600 \text{ or } 7200 \text{ s } (1)$ $Q = 0.15 \times 7200 = 1080 \text{ [C]} (1)$	[2]
		(ii)	$\frac{6480}{1080} = 6[V]$ (ecf on Q)	[1]
		(iii)	$\frac{5832}{1080} = 5.4 [V] \text{ (ecf on } Q)$	[1]
		(iv)	$6 - 5.4 = 0.6 \text{ [V] (1) (ecf from } (b)(ii) \& (iii))$ $\frac{0.6}{0.15} = 4 [\Omega] \text{ (1) (ecf on 0.6 [V])}$ Or Correct substitution into $V = E - Ir$ (i.e. $5.4 = 6.0 - 0.15r$) (1) $r = 4 [\Omega] \text{ (1) (ecf from } (b)(ii) \& (iii))$ Alternative Solution: $\frac{(6480 - 5832)}{7200} = 0.09 \text{ J s}^{-1} \text{ (Lost energy in cell per second) (1)}$ $I^{2}r = 0.09 \text{ and } r = 4 [\Omega] \text{ (1)}$	[2]
			Question 3 Total	[9]

	Ques	tion	Marking details	
4	(a)		Electrical energy (or work done) transferred [to other forms passing] between two points (1) per coulomb of charge (1) Definition of 1 V award 1 mark only	[2]
	(b)	(i)	$V_{\text{supply}} = V_1 + V_2 + V_3$	[1]
		(ii)	Energy	[1]
	(c)	(i)	$R_1+12 = \frac{9}{0.5} (1)$ Clear manipulation seen to show $R_1=6[\Omega]$ (1)	[2]
		(ii) (I)	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ to show effective parallel combination = 6Ω (1) this can be implied V across upper 6Ω resistor shown = 4.5 [V] (ecf on parallel combination) (1)	[2]
		(II)	Total resistance = 12 Ω (1) $I = \frac{9.0}{12} = 0.75 \text{ [A]} \text{ (1) (accept } \frac{4.5}{6} = 0.75 \text{ [A])}$	[2]
		(III)	$1.2 = \frac{9}{(6 + R_{parallel})} $ (1) $R_{parallel} = 1.5 [\Omega] $ (1) $n \times (\frac{1}{12}) = \frac{1}{1.5} $ (1) ecf on $1.5 [\Omega]$ $n = 8 $ (1) Full marks for correct answer based on trial and error Alternative solution: $\frac{9}{1.2} = 7.5 [\Omega] $ (1) $7.5 - 6 = 1.5 [\Omega] $ (1) $\frac{12}{n} = 1.5 [\Omega] $ (1)	[4]
			n = 8 (1) Question 4 Total	[14]

	Question		Marking details	Marks Available
5	(a)	(i)	Ruler and wire shown and labelled (1) Moving pointer or jockey or crocodile clip indicated (1) Either : Correctly positioned ohmmeter with no power supply; or correctly positioned voltmeter and ammeter with power supply (1) [No labelling required for either method].	[3]
		(ii)	Diagonal line through origin	[1]
		(iii)	CSA from diameter of wire (1) Gradient from graph = (R/l) or (ρ/A) Or stated take a pair of R and l values from the graph (1) ρ = gradient × CSA or use of $\rho = RA/l$ (1)	[3]
	(b)	(i)	$R = \frac{144}{32} = 4.5 [\Omega] (1)$ Correct substitution into $R = \rho l/A$ (1) $l = 0.375 [m] (1)$ (ecf on R)	[3]
		(ii)	I = 2.7 [A] (from V/R or P/V etc) (1) (ecf on I) Correct substitution into $I = nAve$ (1) $v = 1.24 \times 10^{-2} [\text{m s}^{-1}]$ (1) accept 0.01 m s ⁻¹	[3]
			Question 5 Total	[13]

Question			Marking details	Marks Available
6	(a)	(i)	Acceleration defined as rate of change of <u>velocity</u> [or equivalent] or $a = \frac{(v - u)}{t} (1)$	[2]
			Clear manipulation to show that $v=u+at$ (1)	
		(ii)	v=u+at substituted into $x = (u+v)t/2$ (1) <u>Clear manipulation</u> shown (1)	[2]
	(b)	(i)	A (1) Horizontal velocity (= 65 m s ⁻¹) constant or same speed as plane or sack lands directly underneath plane (1) Vertical velocity increases or there is a vertical acceleration (1)	[3]
		(ii) (I)	Substitution into $v^2 = u^2 + 2ax$ and $u = 0$ shown (1) x calculated= 45.9 [m] (1)	[2]
		(II)	Correct substitution into $v = at$ or $x = 1/2at^2$ or $x = \frac{(u+v)t}{2}$ (1)	[2]
			t=3.1[s] (1)	
		(iii)	$v_R^2 = (65^2 + 30^2)$ (correct substitution into Pythagoras) (1) $v_R = 71.6 [\mathrm{ms^{-1}}]$ (1) Valid angle calculated <u>and shown</u> or described e.g. $\theta = 24.8^\circ$ below horizontal (1)	[3]
			Question 6 Total	[14]
7	(a)		Replace mass with force (1) Don't accept weight Introduce perpendicular distance to pivot (1)	[2]
	(b)		$(2 \times 700) - 1200$ (1) Weight of beam = 200 [N] (1) Alternative solution: Moment about A or B e.g. $(700 \times 5) = (1200 + W) \times 2.5$	[2]
			$F_{ m A}$ $F_{ m B}$	
	(c)	(i)	W 1 200 [N]	[2]
			Upward forces as shown and indicated (1) Downward forces as shown and indicated (1) N.B. 1 200 [N] force can be indicated anywhere between W and $F_{\rm B}$	
		(ii)	Taking moments about A: $F_{\rm B} \times 5.0 \ (1)$ $(1\ 200 \times 3.5) + (200 \times 2.5) \ (1)$ (ecf on 200) $F_{\rm B} = 940 \ [N] \ (1)$	[3]
		(iii)	1400 - 940 = 460 [N] (ecf from (b) and/or (c)(ii)) Accept answer based on moments calculated about B.	[1]
			Question 7 Total	[10]